Factors associated with sexually transmitted shigella in men who have sex with men: a systematic review

Article (Accepted Version)

Siddiq, Mohammed, O'Flanagan, Holly, Richardson, Daniel and Llewellyn, Carrie D (2022) Factors associated with sexually transmitted shigella in men who have sex with men: a systematic review. Sexually Transmitted Infections, 99. pp. 58-63. ISSN 1368-4973

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/112133/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Factors associated with sexually transmitted shigella in men who have sex with men: a systematic review

Mohammed Siddiq¹, Holly O’Flanagan¹, Daniel Richardson¹-², Carrie Llewellyn¹

1. Brighton & Sussex Medical School
2. University Hospitals Sussex NHS foundation trust

Corresponding author: Professor Daniel Richardson, Sexual health & HIV, University Hospitals Sussex NHS foundation Trust, Brighton, UK, BN2 5BE. Email: docdanielr@hotmail.com Tel 01273664718

Mohammed Siddiq, Brighton & Sussex Medical School, Brighton UK.

Holly O’Flanagan, Brighton & Sussex Medical School, Brighton UK.

Professor Carrie Llewellyn, Brighton & Sussex Medical School, Brighton UK.

Abstract: 226

Word Count: 2468

References: 32

Keywords: Shigella, Shigella flexneri, Shigella sonnei, sexually transmitted infection, men who have sex with men, enteric infection

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Conflict of interests: none declared
Contributors: DR & CL designed this study. MS performed the initial search, MS, HO’F & DR performed the final selection. MS & DR performed the narrative synthesis MS, HO’F, DR and CL all contributed to the final manuscript.

Data availability: All the data from this work is in the manuscript.

Acknowledgements: We would like to acknowledge the individual research project scheme at Brighton & Sussex Medial School for enabling MS and HO’F to work on this systematic review and Colly Fitzpatrick for proofreading the manuscript.
Abstract

Background: Outbreaks of sexually transmitted shigella have been reported in men who have sex with men (MSM) since the 1970s and present a major public health issue. Understanding the factors associated with the sexual transmission of shigella may inform future control strategies.

Methods: We systematically searched 4 bibliographical databases (January 2000 to February 2022) for manuscripts in English. We used a 2-stage process to assess eligibility: the primary author conducted an initial screen and then 3 authors conducted independent full-text reviews to determine the final eligible manuscripts. We only included manuscripts which included MSM diagnosed with sexually transmitted shigella where specific factors associated with transmission were identified.

Results: Thirteen manuscripts met the inclusion criteria which included 547 individuals. Sexually transmitted shigella in MSM was associated with: residing in a capital city/urban region, living with HIV (including engaging in sero-adaptive sexual behaviour, having a low CD4 count, having a HIV viral load >100,000, and not engaging with HIV care), using HIV-pre-exposure prophylaxis, use of geospatial mobile phone applications to meet sexual partners, visiting sex on premises venues, chemsex and recreational drug use, sexual behaviour (including multiple non-regular sexual partners and oral-anal sexual contact) and concomitant sexually transmitted infections.

Conclusion: We have highlighted some important risk behaviours and factors that are associated with sexually transmitted shigella in MSM which can be used to target future shigella control interventions.
Key messages

What is already known:

- Outbreaks of sexually transmitted shigella in MSM are increasing and more public health interventions are needed to reduce morbidity and mortality
- Populations of MSM at risk of sexually transmitted shigella are poorly defined

What this study adds:

- We have clearly identified risk factors for sexually transmitted shigella in MSM: MSM living in urban/capital regions, MSM seeking sex and chemsex using geosocial mobile phone applications, MSM who visit sex on premises venues, MSM living with HIV, MSM using HIV-PrEP, MSM using recreational drugs including chemsex, MSM engaging in oral-anal sexual behaviours with multiple non-regular partners, MSM with other sexually transmitted infections.

How this study might affect research, practice or policy:

- We have highlighted target populations for interventions to reach and optimise shigella control in MSM.
- Increasing awareness of shigella (and shigella control strategies) amongst MSM, healthcare workers and sex on premises venues workers
- Highlighted the importance of sexually transmitted infection testing in MSM with shigella
Introduction

Shigellosis is caused by *Shigella dysenteriae, Shigella flexneri, Shigella sonnei, and Shigella boydii* and is transmitted via the faeco-oral route causing procto-colitis. [ref] *Shigellae* are highly infectious (ingestion of fewer than 10 organisms can lead to shigellosis), have an incubation period of one to two days and the diarrhoeal illness is usually self-limiting not requiring antimicrobial treatment.[1] Sporadic outbreaks of *Shigella* spp in middle and high income settings are associated with returning foreign travel, and more recently domestic sexual transmission within networks of men who have sex with men (MSM).[2, 3] Distinguishing between travel associated and domestic sexual transmission of *Shigella* spp in individuals relies on understanding and extrapolating local epidemiological patterns (e.g. temporal outbreak clusters amongst MSM living with HIV) and where available, phylogenetic analysis (specific genomic strains, including antimicrobial resistant strains can be relatively unique for travel and sexual transmitted outbreaks). In addition, population-based studies have demonstrated significant changes and differences in the male:female ratio of incident shigella infections, where the assumption is, that the increasing proportion of male shigella is driven by MSM. [4-6] Despite these strategies, the classification of the transmission dynamics for some individuals may be challenging.

Sexually transmitted shigella is caused by both *Shigella sonnei* and *Shigella flexneri*, and can lead to diarrhoea, abdominal pain, fever, rectal symptoms and in severe cases, hospitalisation.[3, 7] Studies have shown that up to 1% of asymptomatic MSM have shigella, however the impact of asymptomatic shigella on outbreaks and sexual transmission is unknown.[8-11] Recently, there have been outbreaks of extensively antimicrobial resistant
Shigella in MSM described in the UK and Australia causing significant morbidity.[12, 13] To date, shigella prevention and control strategies have focused on case identification, partner notification, and raising awareness particularly in MSM. Target populations of MSM for interventions to reduce shigella transmission have not been clearly defined. We aimed to systematically review the literature to identify any demographic and behavioural characteristics of MSM who were diagnosed with sexually transmitted shigella.

Methods

Search strategy and selection

A systematic review of the literature was conducted in November 2021 to identify factors associated with sexually transmitted shigella in MSM using the National Institute for Health and Care Excellence (NICE) healthcare databases advanced search tool (HDAS) using appropriate MeSH (medical subject heading) terms. We searched four bibliographical databases (EMBASE, medline, EMCARE and CINAHL) to identify relevant manuscripts using the following search terms ((Shigellosis OR Shigella OR "Bacillary dysentery" OR "Enteric infection" OR enterobacteria) AND (MSM OR Gay OR Bisexual OR homosexual)). Manuscripts meeting the following criteria were included in our review; the participants were identified as men who have sex with men (MSM), written in English language, published since the year 2000, and identified at least one socio-demographic or behavioural risk factor. We only included manuscripts where shigella was sexually transmitted: travel associated shigella data was excluded. We excluded studies which involved non-MSM populations and participants under the age of 16. Where manuscripts contained mixed populations of MSM and other participants, we only extracted and analysed data from MSM. We included manuscripts which included asymptomatic shigella in MSM. All types of
study where primary data were reported were included. Conference abstracts, editorials, review articles, opinion articles and grey literature were excluded.

Study Selection and data extraction

From our database search, we generated a list of relevant citations. We used a two-stage process, the primary author scanned the abstracts and then the full text manuscripts to exclude citations which did not meet our criteria. Three authors then independently reviewed the remaining full text articles to assess the quality and risk of bias of each manuscript and determine the final set of manuscripts according to the inclusion criteria. Additional relevant manuscripts found from the reference list of the eligible manuscripts were added where relevant. Inconsistencies were resolved by discussion between all authors. The review protocol was registered on the International Prospective Register of Systematic Reviews (PROSPERO reference: CRD42021289084)

Results

Figure 1 presents the flowchart of the manuscript screening process. Thirteen manuscripts published between 2001 and 2022 met our inclusion criteria. (Table 1) The manuscripts were from Europe (n=8), North America (n=3), Taiwan (n=1) and Australia (n=1).[3, 7, 10, 14-23] The study designs included case-control studies (n=3), cross-sectional studies (n=4), case series (n=4) a case report (n=1) and a qualitative study (n=1). In total, 547 individuals were included with sample sizes ranging from 1 to 194; 250 (46%) of these participants were MSM living with HIV. Two studies included mixed populations of cis-gendered women and individuals who had acquired shigella following overseas travel, however we only extracted data regarding MSM.[3, 15] We identified demographic, biological, and behavioural factors associated with sexually transmitted shigella in MSM. (Table 2)
Demographic factors:

We found that sexually transmitted shigella in MSM was associated with residing in a capital city or urbanised region e.g. London, Berlin or Copenhagen. [14, 17-19]

Biological factors:

Living with HIV, having a higher plasma HIV viral load (over 100,000 copies per ml), and having significantly lower CD4 count, and MSM who were not taking antiretroviral therapy (ART) were associated with sexually transmitted shigella.[3, 7, 15-17, 21, 23] Sexual transmission of antimicrobial resistant strains of shigella (decreased susceptibility to azithromycin [DSA]) was more frequently seen in MSM living with HIV. [22] Having a concomitant sexually transmitted infection (STI) or having a history of an STI (chlamydia, gonorrhoea, syphilis or acute hepatitis C infection) was associated with sexually transmitted shigella in MSM. [7, 15, 16, 19, 22]

Behavioural factors:

Sexually transmitted shigella was associated with HIV sero-adaptive behaviour (where MSM living with HIV were seeking other MSM living with HIV for condom-less anal sex and some HIV seronegative men seeking condom-less anal sex with other HIV-seronegative men). [17] HIV negative MSM using HIV pre-exposure prophylaxis (PrEP) was associated with sexually transmitted shigella and these MSM were significantly more likely to have shigella than MSM not using PrEP. [10, 22] The use of social media, websites, but in particular geospatial sexual networking mobile phone applications; particularly where these platforms provided information about sex parties and sources of chemsex drugs, was associated with sexually
transmitted shigella in MSM [17] Visiting sex on premises venues (e.g. gay saunas) was associated with sexually transmitted shigella.[21] A public health investigation of the sex on premises venues revealed that there were inadequate hand washing amenities and inadequate dedicated anal douching facilities, poor lighting to assist personal hygiene and poor education of venue staff about infection control measures.[21]

Recreational drug use and chemsex, namely mephedrone, crystal methamphetamine, γ-butyrolactone (GBL) and γ-hydroxybutyrate (GHB), PDE5 inhibitors (sildenafil/tadalafil), ecstasy, poppers and marijuana and injecting drug use was associated with sexually transmitted shigella in MSM.[7, 17, 19] Specific sexual behaviours particularly oral-anal sexual contact (rimming), but also condom-less anal sex, fisting (insertive and receptive) and coprophilia (deriving sexual excitation from faeces), multiple non-regular sexual partners including attending sex parties and group sex was associated with sexually transmitted shigella in MSM[3, 16-23]

Discussion

Our review has identified some specific factors including demographic, biological, sex-seeking behaviours, recreational drug use and sexual behaviours associated with sexually transmitted shigella in MSM. We believe that this is the first systematic review to characterise specific risk factors associated with shigella in MSM. There are few public health interventions available for shigella prevention and control, and this review provides important insights into the target populations of MSM at risk of sexually transmitted shigella.
Dense sexual networks within large urban populations of MSM (with ready access to HIV pre-exposure prophylaxis or HIV care) appear to readily facilitate the transmission of shigella and present a significant public health issue.[14, 17, 24] As shigella is a highly infectious sexually transmitted infection in the context of these dense sexual networks, it is not surprising that sexually transmitted shigella appears to be associated with these specific geographical locations. MSM living with HIV, in particular those not using antiretroviral therapy are at significant risk of sexually transmitted shigella.[3, 7, 15-17, 19, 21, 23] The risk of shigella in MSM living with HIV may be biological (associated with immunosuppression) however there is no evidence to back this up, and we suggest that the association with HIV is behavioural. MSM living with HIV, not using antiretroviral therapy, not engaged with HIV care with poor surrogates of HIV (high viral load and low CD4 count) have other poor determinants of health including not accessing interventions to reduce STI transmission; using recreational drugs and engaging in behaviours which increase STI and shigella transmission.[1, 10, 22] MSM using PrEP are self-selecting and therefore may be more likely to be at risk of STIs due to the number of sexual partners and frequency of other behaviours associated with shigella.[25, 26] Meeting sex partners using geospatial mobile phone applications, seeking group sex and recreational drug use including injecting (slamming) are all associated with sexually transmitted shigella in MSM as these behaviours and networks will readily facilitate outbreaks of sexually transmitted shigella.[7, 17, 19] Chemsex provides an environment where some MSM show a willingness to push sexual boundaries such as fisting and other sexual practices (coprophilia).[17] Chemsex has been shown to facilitate the transmission of STIs due to the number of sexual partners and the sexual behaviours engaged by MSM using chemsex drugs.[17] Although oral-to-anal sex is
not a new sexual practice, chemsex increases the number and duration of MSM engaging in oral-anal contact and facilitates outbreaks of shigella. Other sexual behaviours amongst MSM increasing the risk of faecal contact such as fisting, coprophilia as well as sex seeking behaviours involving groups may also be increased by chemsex.[17] Shigella in MSM is associated with gonorrhoea, syphilis and hepatitis C most likely because they are circulating within the same sexual networks. Of concern, antimicrobial resistant shigella (including decreased susceptibility to Azithromycin) is associated with having a concomitant bacterial STI.[7, 15, 16, 19, 22]

Population based data have demonstrated the increasing ratio of cis-gendered males compared to cis-gendered females diagnosed with shigella, which has been attributed to sexual transmission of shigella amongst MSM.[6] Shigella transmission in MSM has been described as a ‘perfect storm’. Sexual behaviours, drug using behaviours, the effect of living with HIV in an era of effective treatment and foreign travel have all facilitated shigella becoming a sexually transmitted infection in MSM, which at the time of writing appears to be also be happening with Monkeypox.[24, 27] Epidemiological data from the UK suggests an almost 7-fold increase in sexually transmitted shigella in MSM between 2004-2015 with simultaneous large increases in diagnoses of gonorrhoea, lymphogranuloma venereum and other STIs, particularly in those living with HIV.[28, 29] Most recently, outbreaks of extensively drug resistant shigella have been described in MSM, highlighting the importance of designing more effective interventions globally for prevention, particularly within the routine delivery of PrEP.[13] Recent data from the USA suggest that MSM have poor knowledge of shigella and that any intervention involving behavioural change may have
poor uptake; they conclude that any health promotion strategies need to shift perceptions of shigella amongst MSM.[30]

There are several limitations to this systematic review including significant reporting bias particularly because most studies are from larger cities with denser populations of MSM. Furthermore, the manuscripts in this review only contained data from MSM who presented to healthcare settings and provided a specimen of their faeces. Asymptomatic MSM or those with mild symptoms of shigella may not seek help, or even symptomatic MSM who have poor access to healthcare would not be included in this review. There is a risk, due to the nature of the studies that the reported sexual orientation of participants may not accurately describe their sexual behaviours. It is also feasible that studies may also under-report some risk behaviours such as recreational drug use or sexual behaviours because of participants fear of embarrassment or stigma. Furthermore, many studies rely on self-reporting of sexual behaviours and other risk behaviours. We were only able to include manuscripts in English, and some studies contained mixed populations of MSM and non MSM. Identifying the source of shigella in population-based data may not accurately discriminate between travel associated and sexually transmitted shigella, and it is also feasible that MSM living in high income settings may travel and acquire shigella from sexual behaviours overseas. Some epidemiological studies make assumptions about the source of shigella transmission based on the crude male:female ratio, which may have introduced bias into our analysis. The studies in this review are highly heterogenous with small numbers of participants which may impact on the generalisability of the overall findings. Our study has several strengths including using a robust systematic approach to a relevant research
question to provide insights into the populations of MSM affected by shigella for the design and delivery of health interventions.

There are corelations between the risk factors associated with sexually transmitted shigella in MSM. For example, MSM (including MSM living with HIV) use geospatial mobile phone applications to seek both sexual partners via and recreational drugs including chemsex. It is important that MSM who are diagnosed with shigella are tested and treated for other STIs.[7, 15, 17, 19, 22] MSM with shigella seek care from either sexual health clinicians or in primary care settings and therefore cross-training is needed to educate providers for prevention of shigella.[15] Geospatial mobile phone applications (and social media) could play a part in control interventions with appropriate use of health information and health promotion. Providing online spaces via mobile phone applications to deliver health interventions for shigella has been found to be acceptable to MSM.[31] Those to be targeted could include hosts and attendees of chemsex parties to encourage barriers to shigella transmission, for example condom use and improved hygiene practices such as washing hands after sex and not sharing douching equipment. Working with sex venues such as ‘gay’ saunas to increase awareness of shigella and to provide recommendations for reducing spread and transmission including sufficient light for cleaning equipment and surfaces, access to condoms and staff education on infection control. Sexual health clinics and care providers for specific regions with high proportions of MSM should focus campaigns on raising awareness (in both communities and healthcare providers) of symptoms of shigella and prevention strategies, for example, hygiene during sexual activities, and an awareness of testing all symptomatic MSM (with diarrhoea) including MSM living with HIV and MSM using PrEP. Outbreaks of antimicrobial resistant shigella in
MSM are a major public health concern, and all MSM with diarrhoea should be appropriately tested for shigella, and other enteric pathogens.[12, 13] We need clearer guidance on the use of antimicrobials in MSM with presumptive or confirmed shigella to prevent inappropriate antimicrobial use and to establish more robust surveillance of antimicrobial resistant outbreaks of shigella.[32]

In conclusion, our review has identified specific risk factors associated with sexually transmitted shigella in MSM and we suggest that public health interventions targeting the risk groups we have identified may improve shigella control strategies.
<table>
<thead>
<tr>
<th>Study</th>
<th>Publication year</th>
<th>Sample Size, Patient Demographics</th>
<th>Study design</th>
<th>Population (MSM/Mixed)</th>
<th>Risk Factor(s) with sexually transmitted shigella</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuhn KG, et al. (Denmark)[14]</td>
<td>2021</td>
<td>n=64</td>
<td>Case-control study</td>
<td>MSM vs non MSM case control</td>
<td>MSM with shigella more likely to reside in capital region =p<0.0001</td>
</tr>
<tr>
<td>Eikmeier D, et al. (USA)[15]</td>
<td>2020</td>
<td>691 cases of shigella of which 194 were in non-travel associated men</td>
<td>Cross-sectional study</td>
<td>Mixed population with 217 men</td>
<td>217 men with shigella, 65 (30%) were living with HIV and 36 (17%) had a recent bacterial STI. 42 (19%) had drug resistant [decreased susceptibility to azithromycin (DSA)] shigella men with DSA-shigella higher risk of: chlamydia (OR=8.3, 95%CI=3.2-21.1) gonorrhoea (OR=5.2, 95%CI=2.0-13.4) syphilis (OR=11.7, 95%CI=2.2-62.6) HIV (OR=5.0, 95%CI=2.4-10.1) any bacterial STI (OR=9.0, 95%CI=4.1-20.0) multiple bacterial STIs (OR=9.3, 95%CI=2.9-29.4)</td>
</tr>
<tr>
<td>Serafino Wani, et al. (England)[13]</td>
<td>2016</td>
<td>Living with HIV Previous history of syphilis</td>
<td>Case report</td>
<td>MSM</td>
<td>Living with HIV Recent Hepatitis C infection</td>
</tr>
<tr>
<td>Gilbart V, et al. (England and Wales)[17]</td>
<td>2015</td>
<td>n=34/42 MSM with shigella interviewed, Median age 38 years Living with HIV: 20 (29%)</td>
<td>Qualitative</td>
<td>MSM</td>
<td>Themes generated: MSM living with HIV MSM living in Urban/capital regions MSM using social media and geospatial sexual networking applications facilitating condom less sex MSM engaging in Chemsex (methamphetamine, y-butyrolactone and γ-hydroxybutyrate, PDE5 inhibitors) and injecting drug use MSM attending sex parties and group sex sessions Sexual behaviours: insertive fisting, receptive fisting and coprophilia Sero-adaptive preferences/ behaviour</td>
</tr>
<tr>
<td>Study</td>
<td>Publication year</td>
<td>Sample Size, Patient Demographics</td>
<td>Study design</td>
<td>Population (MSM/Mixed)</td>
<td>Risk Factor(s) with sexually transmitted shigella</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Marcus U, et al. (Germany)[18]</td>
<td>2004</td>
<td>n=17/29 questionnaires analysed, Mean age: 32.7 years</td>
<td>Case series</td>
<td>MSM</td>
<td>oral–anal contact with sex partners</td>
</tr>
<tr>
<td>Wu H, et al. (Taiwan)[19]</td>
<td>2015</td>
<td>n=79, All subjects living with HIV</td>
<td>Case control study</td>
<td>MSM</td>
<td>Oral-anal sex (aOR=15.5, CI=3.6-66.7) Chemsex (aOR=5.6, CI=1.4-227) Poppers (aOR=10.9, CI=1.9-64.2) HIV viral load >100,000 copies/ml (aOR=4.9, CI=1.4-16.9) Past gonorrhoea (aOR 29.4 95%CI 2.3-340.2) Recent syphilis (aOR=4.3, 95%CI=1.6-11.6) Past syphilis (aOR=3.3, 95%CI=1.5-7.0)</td>
</tr>
<tr>
<td>Aragón TJ, et al. (USA)[3]</td>
<td>2007</td>
<td>n=76, Mean age (of cases): 37.4 years</td>
<td>Case control study</td>
<td>Mixed population with 48 MSM</td>
<td>living with HIV (OR=8.17, 95%CI=2.71-24.6) oral-anal contact (OR=7.5, 95%CI=1.74-32.3)</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention, (USA)[20]</td>
<td>2001</td>
<td>n=62/67 MSM with shigella, Median age – 39 years 35 living with HIV</td>
<td>Cross-sectional study</td>
<td>MSM</td>
<td>Oral-anal contact Multiple sexual partners</td>
</tr>
<tr>
<td>O’Sullivan B, et al. (Australia)[21]</td>
<td>2002</td>
<td>n=42, Median age =38 years Living with HIV: 22 (52%)</td>
<td>Cross-sectional study</td>
<td>MSM</td>
<td>Living with HIV Casual sex partners in the last 3 months Visiting a sex venue in the last 2 weeks Oral-anal contact in the last 2 weeks Not always washing hands after sex in the last 2 weeks</td>
</tr>
<tr>
<td>Zayet S, et al. (France)[22]</td>
<td>2021</td>
<td>n=3, Mean age – 32 years PrEP users – 2</td>
<td>Case series</td>
<td>MSM</td>
<td>Multiple sexual contacts History of STIs Condom-less anal and oral sex PrEP use</td>
</tr>
<tr>
<td>Study</td>
<td>Publication year</td>
<td>Sample Size, Patient Demographics</td>
<td>Study design</td>
<td>Population (MSM/Mixed)</td>
<td>Risk Factor(s) with sexually transmitted shigella</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Morgan O, et al.</td>
<td>2006</td>
<td>n=17, Mean age – 37 years</td>
<td>Case series</td>
<td>MSM</td>
<td>Oral-anal contact Casual sexual partners Living with HIV</td>
</tr>
<tr>
<td>(England)[23]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cresswell F, et al.</td>
<td>2015</td>
<td>n=24, Median age – 43 years</td>
<td>Case series</td>
<td>MSM</td>
<td>Chem-sex Concomitant STIs Living with HIV Condom-less anal sex</td>
</tr>
<tr>
<td>(England)[7]</td>
<td></td>
<td>Living with HIV: 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braam J, et al.</td>
<td>2022</td>
<td>n=13/389 had shigella Median age = 32 years</td>
<td>Cross-sectional study</td>
<td>MSM</td>
<td>HIV negative MSM using or having used PrEP</td>
</tr>
<tr>
<td>(Netherlands)[10]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographic</td>
<td>Biological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Residing in a capital city or urban area</td>
<td>• Living with HIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Living with HIV and having a high plasma HIV viral load (not taking anti-retroviral therapy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Living with HIV and having a low CD4 count (not taking antiretroviral therapy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Antimicrobial resistant Shigella spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Having a sexually transmitted infection (chlamydia, gonorrhoea, syphilis, acute hepatitis C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological</td>
<td>• Sero-adaptive (HIV) sexual behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Using HIV-pre-exposure prophylaxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Using social media to meet sexual partners, access sex parties and source chemsex drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Visiting sex on premises venues</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Using recreational drugs (mephedrone, crystal methamphetamine, GHB/GBH, PDE5 inhibitors, ecstasy, poppers, marijuana and injecting drug use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oro-anal sexual behaviour (rimming)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Condom-less anal sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fisting (insertive an receptive) and coprophilia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Multiple non-regular sexual partners</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Attending sex parties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Group sexual behaviours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

